jueves, 10 de diciembre de 2009

.:.:.:GENETICA.:.:.:.





GENÈTICA DE POBLACIONES






La genética de poblaciones es la rama de la genética cuya problematica es describir la variación y distribución biológica, con el objeto de dar explicación a fenómenos evolutivos.
La segregación y variabilidad en la población está gobernada por las Leyes Mendelianas. (Ley de dominancia, Ley de segregación y Ley de segregación independiente).
Se asume que los individuos contribuyen igualmente al “pool genético” y tienen la misma oportunidad de reproducirse.






La frecuencia de los genes y sus alelos tienden a mantenerse constante por generaciones.
Se deduce que los cruces son al azar, no por selección.





Para ello, define a una población como un grupo de individuos de la misma especie que están aislados reproductivamente de otros grupos afines. Estas poblaciones, están sujetas a cambios evolutivos en los que subyacen cambios genéticos, los que a su vez están influenciados por factores como la selección natural y la deriva genética que actúan principalmente disminuyendo la variabilidad de las poblaciones, o migración y mutación que actúan aumentándola.






Cabe destacar, que la pérdida de variabilidad genética en las poblaciones trae consigo dos graves problemas:






Coarta la posibilidad de que el hombre pueda realizar mejoramiento genético en especie de interés comercial y/o recreativo, y disminuye la eficacia biológica (fitness) de las especies ante nuevos cambios ambientales.




Por su parte, la presencia de variabilidad genética es deseable no solo para mejoramiento genético o conservación de especies, ya que el rol fundamental de la variabilidad genética es ser las materia prima para los procesos evolutivos, sin variabilidad no hay evolución. La interacción de estos factores con las poblaciones en el tiempo, permite la existencia de gran número de especies con variadas estructuras poblacionales y formas de vida.
























PRINCIPIO DE HARDY WEINBERG

En
genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibrio de Hardy-Weinberg o ley de Hardy-Weinberg) establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación. Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo. Recibe su nombre del matemático inglés G. H. Hardy y del físico aleman Wilhelm Weinberg que establecieron el teorema independientemente en 1908.










En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.







El principio de Hardy-Weinberg es el más importante de la genética de poblaciones porque:

· Demuestra como el modelo mendeliano de herencia permite la conservación de la variabilidad surgida por mutación en contraposición al modelo de herencia mezclada. según el cuál el valor genético del hijo es el promedio de los de sus padres y la variabilidad genética, salvo mutación, se reduce a la mitad en cada generación.

· Constituye la hipótesis nula de la genética de poblaciones, es decir, que al analizar una población sólo deberemos buscar explicaciones complejas cuando observemos diferencias significativas entre las frecuencias observadas y las propuestas por el equilibrio de Hardy-Weinberg.


















HETEROCIGOSIS O HETEROCIGÒTICO



Heterocigoto (hetero, desigual; cigoto, huevo) (o híbrido) es en Genética un individuo diploide que para un gen dado (locus), tiene en cada uno de dos cromosomas homólogos un alelo distinto, (se expresa, por ej.: Aa), que posee dos formas diferentes de un gen en particular; cada una heredada de cada uno de los progenitores. Los genes pueden tener variantes en la población, es decir, el mismo gen puede ser levemente diferente de un individuo a otro. Si una persona hereda dos variantes de un gen en un par de cromosomas, uno del padre y otro distinto de la madre, esta persona se denominará heterocigota para ese gen.




A modo de ejemplo, supongamos que en un ratón, el carácter "color de pelo" tiene una alelo dominante para el color negro "N" y otro recesivo que expresa el color blanco "n". Si para el carácter "color de pelo", el ratón tiene el genotipo Nn se trata de un individuo Heterocigoto, si por el contrario tuviera NN o nn estaríamos hablando de uno Homocigota.
La condición de heterocigota se denomina heterocigosis.





NOTA.-
El número de gametos distintos que se pueden formar mediante el proceso de recombinación génica(
meiosis) está en función de cuantos loci heterocigotas existen en un individuo. En nuestra especie se estima que en cada persona existen unos 3.350 loci en heterocigosis. Esto quiere decir que cada individuo puede formar "2 elevado a 3350" gametos distintos, un número superior al de átomos existentes en el universo.










HOMOCIGOSIS U HOMOCIGÓTICO




Células de dos juegos de cromosomas homólogos, uno aportado por el gameto masculino y el otro por el gameto femenino. Dado que los genes residen en los cromosomas, resulta evidente que para cada carácter el individuo tendrá dos genes. Si en ambos cromosomas homólogos reside el mismo alelo diremos que el individuo es homocigótico para ese carácter. Por ejemplo, un guisante que tenga como genes para el color AA, es homocigótico, también lo es el que tenga aa.

















CONSANGUINIDAD

Consanguineidad o consanguinidad es la relación de sangre entre dos personas: los parientes consanguíneos son aquellos que comparten sangre por tener algún pariente común, los parientes no consanguíneos son aquellos que no presentan un vínculo de sangre, pero que son parientes por un vínculo legal (matrimonio). A esta otra relación de parentesco se le denomina afinidad.

La consanguinidad también se ha utilizado para reducir la frecuencia de genes deletéreos en genotipos que servirán de parentales en cultivares que se propagarán vegetativamente. Una generación de autofecundación permite la expresión y eliminación de genes deletéreos sin que se produzca una marcada depresión por consanguinidad sobretodo en aquellas que habrán de seleccionarse como parentales para el desarrollo de una población.






















miércoles, 2 de diciembre de 2009


LIGAMIENTO CROMOSÓMICO




Por definición, se dice que dos loci están ligados cuando se encuentran situados sobre el mismo cromosoma. Todos aquellos loci que se encuentran situados sobre el mismo cromosoma forman un Grupo de Ligamiento.



Cuanto más alejados están entre sí dos loci ligados ( A,a y C,c) más probable es que se dé sobrecruzamiento entre ellos, cuanto más cerca están entre sí dos loci ligados (A,a y B,b) menos probable es que se dé sobrecruzamiento entre ambos.












Dos loci ligados pueden estar en Fase de Acoplamiento AB/ab (los dos alelos dominantes sobre el mismo cromosoma, y los dos recesivos sobre el cromosoma homologo) o en Fase de Repulsión Ab/aB (un alelo dominante y otro recesivo sobre cada cromosoma).





Mapas de ligamiento genético.





Los mapas de ligamiento genético ilustran el orden de los genes sobre un cromosoma y las distancias relativas entre esos genes. Originalmente, estos mapas estaban hechos trazando la herencia de múltiples características, como color de pelo y color de ojos, a través de muchas generaciones.




El mapeo de ligamiento genético es posible por el proceso biológico llamado “crossing over” que ocurre durante la meiosis. Durante un estadio de la meiosis, los cromosomas se juntan de a pares en el centro de la célula e intercambian fragmentos equivalentes entre sí.



El crossing over produce cromosomas con nuevas combinaciones de genes –y descendencia con nuevas combinaciones de características no vistas en ningún padre. Generalmente, cuanto más cercanos estén dos genes, menor posibilidad de que sean separados por crossing over.










Esto significa que las características que se heredan juntas probablemente estén influenciadas por genes que se encuentran cerca en un cromosoma y viceversa. Así, siguiendo varias características a través de las generaciones y observando con que frecuencia ocurren las recombinaciones, uno puede mapear la posición relativa de los genes correspondientes.




Hoy en día, los científicos construyen los mapas trazando la herencia de ciertas secuencias de ADN, de la misma forma que antes trazaban la herencia de las características visibles. El genoma contiene muchos lugares donde las secuencias de ADN varían de persona a persona. Estas variaciones de secuencia, o polimorfismos, son las guías para los mapas de ligamiento genético modernos.












Cuando un gen está situado sobre el segmento diferencial del cromosoma X los cruces recíprocos entre líneas puras no son iguales en cuanto a su descendencia. Uno de los cruces produce una F1 uniforme y el otro produce hijos machos (m) del mismo fenotipo que su madre e hijos hembras (f) del mismo fenotipo que su padre. Este fenómeno se denomina herencia cruzada.

Un caso clásico es el de las gallinas listadas de Bateson. William Bateson realizó cruzamientos entre dos estirpes de gallina con un plumaje claramente diferenciado: la raza Langshan Black, de plumaje negro liso y la raza Plymouth Rock barrada con un plumaje a rayas muy característico.





















Adultos raza Langshan Black ..........................Pollito de raza Langshan Black




Adultos raza Plymouth Rock barrada .............Pollito Plymouth Rock barrado







El cruce entre un gallo de plumaje listado (L) y una gallina de plumaje liso (l) produce hijos de plumaje listado, lo cual indica que L es dominante sobre l (L > l). Sin embargo, el cruce reciproco, gallo l y gallina L produce una F1 compuesta de gallos L y gallinas l.












Por si esto fuera poco, Bateson observó que en la F2 del primer cruce, gallo de plumaje listado (L) y gallina de plumaje liso (l), la segregación, aunque aparentemente mendeliana, 3 individuos de fenotipo dominante (L) por cada individuo de fenotipo recesivo (l), todos los individuos de fenotipo recesivo resultaron ser hembras, es decir, que si se consideraba cada sexo por separado la segregación dejaba de ser 3:1 para convertirse en 1:1 en las gallinas y 1:0 en los gallos.




El segundo cruce, gallo de plumaje liso (l) y gallina de plumaje listado (L), que ya mostró una segregación atípica en la F1 produjo una F2 con una segregación 1:1 que, en este caso, era igual en machos y hembras.








ENTRECRUZAMIENTO CROMOSÓMICO (CROSSING OVER)






El Entrecruzamiento cromosómico (o crossing over en inglés) es el proceso por el cual dos cromosomas se aparean e intercambian secciones de su ADN. La sinapsis comienza antes de que se desarrolle el complejo sinaptonémico, y no está completo hasta cerca del final de la profase



1. El entrecruzamiento usualmente se produce cuando se aparean las regiones en las rupturas del cromosoma y luego se reconectan al otro cromosoma. El resultado de este proceso es un intercambio de genes, llamado recombinación genética. Los entrecruzamientos cromosómicos también sucede en organismos asexuales y en células somáticas, ya que son importantes formas de reparación del ADN.










El entrecruzamiento fue descrito, en teoría, por Thomas Hunt Morgan. Él se apoyó en el descubrimiento del profesor belga Frans Alfons Janssens de la Universidad de Leuven que describió el fenómeno en 1909. El término quiasma está relacionado sino es idéntico al entrecruzamiento cromosómico. Morgan inmediantamente vio la gran importancia de la interpretación citológica de Janssens de la quiasma en los resultados experimentales en su investigación de la herencia en Drosophila. Las bases físicas el entrecruzamiento fueron demostrados primero por Harriet Creighton y Barbara McClintock en 1931.













Recombinación genética


La recombinación genética es un proceso que lleva a la obtención de un nuevo genotipo a través del intercambio de material genético entre secuencias homólogas de DNA de dos orígenes diferentes. La información genética de dos genotipos puede ser agrupada en un nuevo genotipo mediante recombinación genética. Por lo tanto la recombinación genética es otra forma efectiva de aumentar la variabilidad genética de una población.




Para que aparezcan nuevos genotipos como consecuencia de la recombinación, es esencial que las dos secuencias homólogas sean genéticamente diferentes. Tal es el caso en una célula eucariótica diploide, que tiene dos juegos de cromosomas, uno procedente de cada padre. El punto donde los cromosomas se cruzan se denomina kiasma y el proceso de intercambio se llama entrecruzamiento.En las células procariotas sólo existe un único cromosoma. Por lo tanto, antes de que pueda ocurrir la recombinación, un cromosoma homólogo (normalmente una parte de este) debe primero ser transferido desde una bacteria donadora a una bacteria receptora. Debido a que el cromosoma del donador debe ser homólogo con el receptor, las bacterias donadoras y receptoras generalmente pertenecen a la misma especie o a especies muy relacionadas.



La recombinación homóloga ocurre después de la transferencia es decir, cuando el fragmento de DNA del donador está en la célula receptora. Si no se produce recombinación, el fragmento de DNA del donador se perderá, debido a que no puede replicarse independientemente.